Intergers Blog 9



Good Morning Learners,

We are continuing with the chapter 1 Integers. In the previous blogs, you all have learned about

(i) Numbers, Positive and Negative Integers
(ii) Properties of Addition and Subtraction of Integers
(iii) Multiplication of Integers

Now we are moving ahead to learn more about 'Division of Integers'.

Important Instructions:
(i) Red Lines need to be done in your maths note book.
(ii) Green Lines need to be read carefully.
(iii) Keep your text book for reference.
(iv) Home Assignment need to be done in your maths note book.
(v) Complete your index, put chapter name, date, exercise no in your maths note book.
(vi) Important links are provided at the end of the blog for better understanding.

LEARNING OUTCOMES-
At the end of today's topic, learners will be able to
(i) explain the division as the inverse operation of multiplication.
(ii) justify the division as the inverse operation of multiplication.
(iii) solve problems of division of integers.

So let us start the topic of today.......

                                                       DIVISION OF INTEGERS

Look at the examples for whole numbers-

Example 1:                 3   X   5   =  15

when we divide 15 by 5    (15  ÷ 5 =  3)  In the same way when we divide 15 by 3  (15  ÷  3  =   5)

Example 2:                4     X    3  =   12

when we divide 12 by 4  (12  ÷  4  =  3)     In the same way when we divide 12 by 3  (12  ÷ 3 =  4)

Example 3:              6      X      4  =  24

when we divide 24 by 6   (24  ÷  6  =  4)  In the same way when we divide 24 by 4   (24   ÷  6   =  4)

Example 4:                 7    X    5    =  35

when we divide 35 by 7 (35  ÷ 7  =  5)   In the same way  when we divide 35 by 7 ( 35 ÷ 5 = 7)

These examples proves that "MULTIPLICATION STATEMENT OF WHOLE NUMBERS THERE ARE TWO DIVISION STATEMENTS"

The operation of division is an inverse operation of multiplication. 

If a and b are two integers (a and b not equal to 0), then dividing a by b is same as finding an integers c which when multiplied by b gives a 

                 b    X    c   = a
    
thus,        a   ÷   b  = c  is same as    b    X    c   =   a

TASK 1: Observe the following table where in column A is multiplication statement and column B is corresponding division statements. 
One is done for you all, help your self in complete the rest

Now, let us all see the division of integers. For better understanding observed the following examples-

Now, we should learn about Divisions of Integers.

Example 1     (-12)  ÷  3   =  - 4

Example 2     (-12)  ÷  2    =  - 3

Example 3    (-32)   ÷  4    =   - 8

RULE:  when a negative integer is divided by a positive integer, divide the numbers as whole numbers and put a negative sign before the quotient to get a negative integer.

Example 4     72   ÷  (-8)   = - 9

Example 5     50   ÷  (-10)  = - 5

Example 6     72   ÷   (-9)   = - 8

RULE: when a positive integer is divided by a negative integer, divide the number as whole numbers and put a negative sign before the quotient to get a negative integer.

FORMULA:            For any two positive integers a and b; where b is not equal to 0

                                  a   ÷   (- b)   =  (-a)  ÷   b                   where b is not equal to 0

RULE: when a negative integer is divided by a negative integer, divide the number as whole numbers and put a positive sign before the quotient to get a positive integer.

FORMULA:          For any two positive integers a and b; where b is not equal to 0

                                 (-a)  ÷   (-b)   =    a  ÷  b              where b is not equal to 0   

TASK 2: Observe the following table where in column A is multiplication statement and column B is corresponding division statements. 
One is done for you all, help your self in complete the rest.


Information Links:  (1)  https://www.youtube.com/watch?v=b6JaiKvEP9Y

                                 (2) https://www.youtube.com/watch?v=AsRIuvKzvfo

                                 (3) https://www.youtube.com/watch?v=zwDnnSANoQU

HOME ASSIGNMENT:
1. Do "Try These" on page 23.
2. Do Q No 1, 2, 3 of  Exercise 1.4

Comments

  1. Good Morning Sir
    Kevin Tom Benoy 7B

    ReplyDelete
  2. Good morning sir
    Mohammed Rayhan 7B

    ReplyDelete
  3. Good morning sir
    Nishit Kedia 7B

    ReplyDelete
  4. Good morning sir I am Devansh 7-B

    ReplyDelete
  5. Good morning sir !
    Vaibhav Vij 7-B

    ReplyDelete
  6. Good Morning Sir
    Manmeet Singh 7B

    ReplyDelete
  7. Good Morning Sir
    Jadon Stanley Minj 7B

    ReplyDelete
  8. Good morning sir, I am Theofin S Shaji
    7B

    ReplyDelete
  9. Good morning sir I am Vincent Anthony Paul from class 7-B=(18.04.20).

    ReplyDelete
  10. GOOD MORNING SIR AYUSH ARUN7b

    ReplyDelete
  11. Good morning Sir
    Vilhousier Sanchu
    7B

    ReplyDelete
  12. Good Morning Sir,
    Jatin Giroti 7B

    ReplyDelete
  13. Good morning sir
    Kanav Kapoor 7B

    ReplyDelete
  14. Anonymous4/18/2020

    Good morning sir , Rudra Joshi 7B

    ReplyDelete
  15. Good morning Sir
    Mohammed Faraaz Qureshi 7B

    ReplyDelete
  16. Good morning sir this is Derick Decastro my class is 7 B

    ReplyDelete
  17. Good Morning Sir!

    Aarav Bansal
    7B

    ReplyDelete
  18. Good Morning Sir
    Kevin Tom Benoy 7B

    ReplyDelete
  19. Good morning sir
    Lamor Richut Kapai
    7B

    ReplyDelete
  20. Good morning sir Anirudh Adlakha 7b

    ReplyDelete
  21. Good morning sir .Aaron Xavier Jomon 7B

    ReplyDelete
  22. Good morning sir Aarav Vashistha 7B

    ReplyDelete
  23. Good morning Sir, Harshit Ranjan 7 B

    ReplyDelete
  24. Good morning ma'am parth Sharma

    ReplyDelete
  25. Good morning ma'am shaurya Arora 7B

    ReplyDelete
  26. Good morning mam I am Jayesh kaushik

    ReplyDelete
  27. Good morning sir, Vincent Anthony Paul from 7 B (20-04-20)

    ReplyDelete

Post a Comment

Popular posts from this blog

Rational Number Blog 6

Line and Angles Blog 3

Assignment- Rational Numbers